Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau.

نویسندگان

  • Ismael Santa-Maria
  • Maria E Alaniz
  • Neil Renwick
  • Carolina Cela
  • Tudor A Fulga
  • David Van Vactor
  • Thomas Tuschl
  • Lorraine N Clark
  • Michael L Shelanski
  • Brian D McCabe
  • John F Crary
چکیده

Tau is a highly abundant and multifunctional brain protein that accumulates in neurofibrillary tangles (NFTs), most commonly in Alzheimer's disease (AD) and primary age-related tauopathy. Recently, microRNAs (miRNAs) have been linked to neurodegeneration; however, it is not clear whether miRNA dysregulation contributes to tau neurotoxicity. Here, we determined that the highly conserved brain miRNA miR-219 is downregulated in brain tissue taken at autopsy from patients with AD and from those with severe primary age-related tauopathy. In a Drosophila model that produces human tau, reduction of miR-219 exacerbated tau toxicity, while overexpression of miR-219 partially abrogated toxic effects. Moreover, we observed a bidirectional modulation of tau levels in the Drosophila model that was dependent on miR-219 expression or neutralization, demonstrating that miR-219 regulates tau in vivo. In mammalian cellular models, we found that miR-219 binds directly to the 3'-UTR of the tau mRNA and represses tau synthesis at the post-transcriptional level. Together, our data indicate that silencing of tau by miR-219 is an ancient regulatory mechanism that may become perturbed during neurofibrillary degeneration and suggest that this regulatory pathway may be useful for developing therapeutics for tauopathies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of miR159 and miR396 mediated by Piriformospora indica confer drought tolerance in rice

Drought stress is one of the most determinative factors of agriculture and plays a major role in limiting crop productivity. This limitation is going to rising through climate changes. However, plants have their own defense systems to moderate the adverse effects of climatic conditions. MicroRNA-mediated post-transcriptional gene regulation is one of these defense mechanisms. The root endophyti...

متن کامل

MicroRNAs as a New Molecular Biomarker for Diagnosis and Prognosis of T-cell Acute Lymphoblastic Leukemia (T-ALL): A Systematic Review

MicroRNAs (miRNAs, miRs) are small endogenous non-coding RNAs that regulate the expression of protein-encoding genes at the post-transcriptional level. Several studies have described the role of miRNAs in T-cell acute lymphoblastic leukemia (T-ALL), including tumor suppressor and oncogenic miRNAs. Down-regulation of miRNA expression is a prominent feature of human malignancy. This down-regulati...

متن کامل

Woodchuck Hepatitis Virus Post-Transcriptional Regulation Element (WPRE) Promotes Anti-CD19 BiTE Expression in Expi293 Cells

Background: Bispecific antibodies represent an important class of mAbs, with great therapeutic potentials due to their ability to target simultaneously two distinct epitopes. The generation of functional bispecific antibodies with the highest possible yields is particularly critical for the production of these compounds on industrial scales. Anti- CD3 × CD19 bsAb is a bispecific T-cell engager ...

متن کامل

MicroRNA Regulation and its Biological Significance in Personalized Medicine and Aging

The recent explosion of research on the role of noncoding RNAs (ncRNA) in the control of gene expression has revealed multifaceted implications concerning the regulation of numerous mammalian systems, ranging from determination of cell fate during development to maintenance of terminally differentiated states. Among the various types of ncRNA, microRNAs are probably the best known group; their ...

متن کامل

P 97: Neurodegeneration Induced by Tau protein

Tau is one of several types of microtubule-associated proteins (MAPs), responsible for the assembly and stability of microtubule networks that is present only in neurons and predominantly localized in axons which its functions are tightly regulated by phosphorylation. Via as yet unknown mechanisms, tau becomes hyperphosphorylated and accompanies with neuronal degeneration, loss of synapses...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 125 2  شماره 

صفحات  -

تاریخ انتشار 2015